
SCC NetCDF input files structure
version:3.5
July 29, 2021

The Single Calculus Chain (SCC) is composed by three different modules:

• pre-processing module (ELPP)

• optical processing module (ELDA)

• depolarization calibrator module (ELDEC)

To perfom aerosol optical retrievals the SCC needs not only the raw lidar data but also a
certain number of parameters to use in both pre-processing and optical processing stages.
The SCC gets these parameters looking at two different locations:

• Single Calculus Chain relational database (SCC DB)

• Input files

There are some paramenters that can be found only in the input files (those ones changing
from measurement to measurement), others that can be found only in the SCC DB and
other ones that can be found in both these locations. In the last case, if a particular
parameter is needed, the SCC will search first in the input files and then in SCC DB.
If the parameter is found in the input files the SCC will keep it without looking into
SCC DB.

The input files have to be submitted to the SCC in NetCDF format. At present the
SCC can handle four different types of input files:

1. Raw Lidar Data

2. Sounding Data

3. Overlap

4. Lidar Ratio

As already mentioned, the Raw Lidar Data file contains not only the raw lidar data
but also other parameters to use to perform the pre-processing and optical processing.
The Sounding Data file contains the data coming from a correlative radiosounding and
it is used by the SCC for molecular density calculation. The Overlap file contains the
measured overlap function. The Lidar Ratio file contains a lidar ratio profile to use in
elastic backscatter retrievals. The Raw Lidar Data file is of course mandatory and the
Sounding Data, Overlap and Lidar Ratio files are optional. If Sounding Data file is not
submitted by the user, the molecular density will be calculated by the SCC using model
forecast/re-analysis or in case these are not available using the “US Standard Atmosphere
1976”. If the Overlap file is not submitted by the user, the SCC will get the full overlap
height from SCC DB and it will produce optical results starting from this height. If Lidar

Ratio file is not submitted by the user, the SCC will consider a fixed value for lidar ratio
got from SCC DB.

The user can decide to submit all these files or any number of them (of course the file
Raw Lidar Data is mandatory). For example the user can submit together with the Raw

Lidar Data file only the Sounding Data file or only the Overlap file.

1



This document provides a detailed explanation about the structure of the NetCDF
input files to use for SCC data submission. All Earlinet groups should read it carefully
because they have to produce such kind of input files if they want to use the SCC for
their standard lidar retrievals. Every comments or suggestions regarding this document
can be sent to Giuseppe D’Amico by e-mail at damico@imaa.cnr.it
This document is available for downloading at http://scc-documentation.readthedocs.io/en/latest

In table 1 is reported a list of dimensions, variables and global attributes that can be
used in the NetCDF Raw Lidar Data input file. For each of them it is indicated:

• The name. For the multidimensional variables also the corresponding dimensions
are reported

• A description explaining the meaning

• The type

• If it is mandatory or optional

As already mentioned, the SCC can get some parameters looking first in the Raw

Lidar Data input file and then into SCC DB. This means that to use the parameters
stored in SCC DB the optional variables or optional global attributes must not appear
within Raw Lidar Data file. This is the suggested and recommended way to use the SCC.
Please include optional parameters in the Raw Lidar Data only as an exception.

In table 2, 3 and 4 are reported all the information about the structure of Sounding

Data, Overlap and Lidar Ratio input files respectively.

1 Example

Let’s now consider an example of Raw Lidar Data input file. Suppose we want to generate
NetCDF input file corresponding to a measurement with the following properties:
Start Date 30th January 2009
Start Time UT 00:00:01
Stop Time UT 00:05:01
Station Name Dummy station
Earlinet call-sign cc
Pointing angle 5 degrees with respect to the zenith

Moreover suppose that this measurement is composed by the following lidar channels:

1. 1064 lidar channel
Emission wavelength=1064nm Detection wavelength=1064nm
Time resolution=30s Number of laser shots=1500
Number of bins=3000 Detection mode=analog
Range resolution=7.5m Polarization state=total

2. 532 cross lidar channel
Emission wavelength=532nm Detection wavelength=532nm
Time resolution=60s Number of laser shots=3000
Number of bins=5000 Detection mode=photoncounting
Range resolution=15m Polarization state=cross (transmitted)

2



3. 532 parallel lidar channel
Emission wavelength=532nm Detection wavelength=532nm
Time resolution=60s Number of laser shots=3000
Number of bins=5000 Detection mode=photoncounting
Range resolution=15m Polarization state=parallel (reflected)

4. 607 N2 vibrational Raman channel
Emission wavelength=532nm Detection wavelength=607nm
Time resolution=60s Number of laser shots=3000
Number of bins=5000 Detection mode=photoncounting
Range resolution=15m

Finally let’s assume we have also performed dark measurements before the lidar measure-
ments from the 23:50:01 UT up to 23:53:01 UT of 29th January 2009.

1.1 Dimensions

Looking at table 1 we have to fix the following dimensions:

points

channels

time

nb_of_time_scales

scan_angles

time_bck

The dimension time is unlimited so we don’t have to fix it.
We have 4 lidar channels so:

channels=4

Regarding the dimension points we have only one channel with a number of vertical bins
equal to 3000 (the 1064nm) and all other channels with 5000 vertical bins. In cases like
this the dimension points has to be fixed to the maximum number of vertical bins so:

points=5000

Moreover only one channel (1064nm) is acquired with a time resolution of 30 seconds,
all the other channels have a time resolution of 60 seconds. This means that we have to
define two different time scales. We have to set:

nb_of_time_scales=2

The measurement is performed only at one scan angle (5 degrees with respect to the
zenith) so:

scan_angles=1

We have 3 minutes of dark measurements and two different time scales one with 60
seconds time resolution and the other one with 30 seconds time resolution. So we will
have 3 different dark profiles for the channels acquired with the first time scale and 6
for the lidar channels acquired with the second time scale. We have to fix the dimension
time_bck as the maximum between these values:

time_bck=6

3



1.2 Variables

In this section it will be explained how to fill all the possible variables either mandatory
or optional of Raw Lidar Data input file.

• Raw_Data_Start_Time(time, nb_of_time_scales)

This 2 dimensional mandatory array has to contain the acquisition start time (in
seconds from the time given by the global attribute RawData_Start_Time_UT) of
each lidar profile. In this example we have two different time scales: one is char-
acterized by steps of 30 seconds (the 1064nm is acquired with this time scale) the
other by steps of 60 seconds (532cross, 532parallel and 607nm). Moreover the mea-
surement start time is 00:00:01 UT and the measurement stop time is 00:05:01 UT.
In this case we have to define:

Raw_Data_Start_Time =

0, 0,

60, 30,

120, 60,

180, 90,

240, 120,

_, 150,

_, 180,

_, 210,

_, 240,

_, 270 ;

The order used to fill this array defines the correspondence between the different
time scales and the time scale index. In this example we have a time scale index
of 0 for the time scale with steps of 60 seconds and a time scale index of 1 for the
other one.

• Raw_Data_Stop_Time(time, nb_of_time_scales)

The same as previous item but for the data acquisition stop time. Following a
similar procedure we have to define:

Raw_Data_Stop_Time =

60, 30,

120, 60,

180, 90,

240, 120,

300, 150,

_, 180,

_, 210,

_, 240,

_, 270,

_, 300 ;

• Raw_Lidar_Data(time, channels, points)

This 3 dimensional mandatory array has to be filled with the time-series of raw
lidar data. The photoncounting profiles have to submitted in counts (so as integers)

4



while the analog ones in mV. The order the user chooses to fill this array defines
the correspondence between channel index and lidar data.
For example if we fill this array in such way that:
Raw_Lidar_Data(time,0,points) → is the time-series of 1064 nm
Raw_Lidar_Data(time,1,points) → is the time-series of 532 cross
Raw_Lidar_Data(time,2,points) → is the time-series of 532 parallel
Raw_Lidar_Data(time,3,points) → is the time-series of 607 nm

from now on the channel index 0 is associated to the 1064 channel, 1 to the 532
cross, 2 to the 532 parallel and 3 to the 607nm.

• Raw_Bck_Start_Time(time_bck, nb_of_time_scales)

This 2 dimensional optional array has to contain the acquisition start time (in
seconds from the time given by the global attribute RawBck_Start_Time_UT) of
each dark measurements profile. Following the same procedure used for the variable
Raw_Data_Start_Time we have to define:

Raw_Bck_Start_Time =

0, 0,

60, 30,

120, 60,

_, 90,

_, 120,

_, 150;

• Raw_Bck_Stop_Time(time_bck, nb_of_time_scales)

The same as previous item but for the dark acquisition stop time. Following a
similar procedure we have to define:

Raw_Bck_Stop_Time =

60, 30,

120, 60,

180, 90,

_, 120,

_, 150,

_, 180 ;

• Background_Profile(time_bck, channels, points)

This 3 dimensional optional array has to be filled with the time-series of the dark
measurements data. The photoncounting profiles have to submitted in counts (so
as integers) while the analog ones in mV. The user has to fill this array following
the same order used in filling the array Raw_Lidar_Data:
Background_Profile(time_bck,0,points) → dark time-series at 1064 nm
Background_Profile(time_bck,1,points) → dark time-series at 532 cross
Background_Profile(time_bck,2,points) → dark time-series at 532 parallel
Background_Profile(time_bck,3,points) → dark time-series at 607 nm

• channel_ID(channels)

This mandatory array provides the link between the channel index within the Raw

Lidar Data input file and the channel ID in SCC DB. To fill this variable the user
has to know which channel IDs in SCC DB correspond to his lidar channels. For

5



this purpose the SCC, in its final version will provide to the user a special tool to
get these channel IDs through a Web interface. At the moment this interface is not
yet available and these channel IDs will be communicated directly to the user by
the NA5 people.
Anyway to continue the example let’s suppose that the four lidar channels taken
into account are mapped into SCC DB with the following channel IDs:
1064 nm → channel ID=7
532 cross → channel ID=5
532 parallel → channel ID=6
607 nm → channel ID=8

In this case we have to define:

channel_ID = 7, 5, 6, 8 ;

• id_timescale(channels)

This mandatory array is introduced to determine which time scale is used for the
acquisition of each lidar channel. In particular this array defines the link between
the channel index and the time scale index. In our example we have two different
time scales. Filling the arrays Raw_Data_Start_Time and Raw_Data_Stop_Time we
have defined a time scale index of 0 for the time scale with steps of 60 seconds and
a time scale index of 1 for the other one with steps of 30 seconds. In this way this
array has to be set as:

id_timescale = 1, 0, 0, 0 ;

• Laser_Pointing_Angle(scan_angles)

This mandatory array contains all the scan angles used in the measurement. In our
example we have only one scan angle of 5 degrees with respect to the zenith, so we
have to define:

Laser_Pointing_Angle = 5 ;

• Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales)

This mandatory array is introduced to determine which scan angle is used for the
acquisition of each lidar profile. In particular this array defines the link between
the time and time scales indexes and the scan angle index. In our example we have
a single scan angle that has to correspond to the scan angle index 0. So this array
has to be defined as:

Laser_Pointing_Angle_of_Profiles =

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

_, 0,

_, 0,

_, 0,

_, 0,

_, 0 ;

6



• Laser_Shots(time, channels)

This mandatory array stores the laser shots accumulated at each time for each
channel. In our example the number of laser shots accumulated is 1500 for the
1064nm channels and 3000 for all the other channels. Moreover the laser shots do
not change with the time. So we have to define this array as:

Laser_Shots =

1500, 3000, 3000, 3000,

1500, 3000, 3000, 3000,

1500, 3000, 3000, 3000,

1500, 3000, 3000, 3000,

1500, 3000, 3000, 3000,

1500, _, _, _,

1500, _, _, _,

1500, _, _, _,

1500, _, _, _,

1500, _, _, _ ;

• Emitted_Wavelength(channels)

This optional array defines the link between the channel index and the emission
wavelength for each lidar channel. The wavelength has to be expressed in nm. This
information can be also taken from SCC DB. In our example we have:

Emitted_Wavelength = 1064, 532, 532, 532 ;

• Detected_Wavelength(channels)

This optional array defines the link between the channel index and the detected
wavelength for each lidar channel. Here detected wavelength means the value of
center of interferential filter expressed in nm. This information can be also taken
from SCC DB. In our example we have:

Detected_Wavelength = 1064, 532, 532, 607 ;

• Raw_Data_Range_Resolution(channels)

This optional array defines the link between the channel index and the raw range
resolution for each channel. If the scan angle is different from zero this quantity is
different from the vertical resolution. More precisely if α is the scan angle used and
∆z is the range resolution the vertical resolution is calculated as ∆z

′ = ∆z cos α.
This array has to be filled with ∆z and not with ∆z

′. The unit is meters. This
information can be also taken from SCC DB. In our example we have:

Raw_Data_Range_Resolution = 7.5, 15.0, 15.0, 15.0 ;

• Scattering_Mechanism(channels)

This optional array defines the scattering mechanism involved in each lidar channel.
In particular the following values are adopted:

7



0 → Total elastic backscatter
1 → N2 vibrational Raman backscatter
2 → Cross polarization elastic backscatter
3 → Parallel polarization elastic backscatter
4 → H2O vibrational Raman backscatter
5 → Rotational Raman low quantum number
6 → Rotational Raman high quantum number

This information can be also taken from SCC DB. In our example we have:

Scattering_Mechanism = 0, 2, 3, 1 ;

• Signal_Type(channels)

This optional array defines the type of signal involved in each lidar channel. In
particular the following values are adopted:
0 → Total elastic
1 → Total elastic near range
2 → Total elastic far range
3 → N2 vibrational Raman
4 → N2 vibrational Raman near range
5 → N2 vibrational Raman far range
6 → Elastic polarization reflected
7 → Elastic polarization transmitted
8 → Rotational Raman line close to elastic line
9 → Rotational Raman line far from elastic line
10 → Elastic polarization reflected near range
11 → Elastic polarization reflected far range
12 → Elastic polarization transmitted near range
13 → Elastic polarization transmitted far range
14 → H2O vibrational Raman backscatter
15 → Rotational Raman line far from elastic line near range
16 → Rotational Raman line far from elastic line far range
17 → Rotational Raman line close to elastic line near range
18 → Rotational Raman line close to elastic line far range
19 → H2O vibrational Raman backscatter near range
20 → H2O vibrational Raman backscatter far range
21 → Total elastic ultra near range
22 → +45 rotated elastic polarization transmitted
23 → +45 rotated elastic polarization reflected
24 → -45 rotated elastic polarization transmitted
25 → -45 rotated elastic polarization reflected
26 → +45 rotated elastic polarization transmitted near range
27 → +45 rotated elastic polarization transmitted far range
28 → +45 rotated elastic polarization reflected near range
29 → +45 rotated elastic polarization reflected far range
30 → -45 rotated elastic polarization transmitted near range
31 → -45 rotated elastic polarization transmitted far range
32 → -45 rotated elastic polarization reflected near range
33 → -45 rotated elastic polarization reflected far range

This information can be also taken from SCC DB. In our example we have:

8



Signal_Type = 0, 7, 6, 3 ;

• Acquisition_Mode(channels)

This optional array defines the acquisition mode (analog or photoncounting) in-
volved in each lidar channel. In particular a value of 0 means analog mode and 1
photoncounting mode. This information can be also taken from SCC DB. In our
example we have:

Acquisition_Mode = 0, 1, 1, 1 ;

• Laser_Repetition_Rate(channels)

This optional array defines the repetition rate in Hz used to acquire each lidar
channel. This information can be also taken from SCC DB. In our example we are
supposing we have only one laser with a repetition rate of 50 Hz so we have to set:

Laser_Repetition_Rate = 50, 50, 50, 50 ;

• Dead_Time(channels)

This optional array defines the dead time in ns associated to each lidar channel. The
SCC will use the values given by this array to correct the photoncounting signals
for dead time. Of course for analog signals no dead time correction will be applied
(for analog channels the corresponding dead time values have to be set to undefined
value). This information can be also taken from SCC DB. In our example the 1064
nm channel is acquired in analog mode so the corresponding dead time value has to
be undefined. If we suppose a dead time of 10 ns for all other channels we have to
set:

Dead_Time = _, 10, 10, 10 ;

• Dead_Time_Corr_Type(channels)

This optional array defines which kind of dead time correction has to be applied
on each photoncounting channel. The SCC will correct the data supposing a not-
paralyzable channel if a value of 0 is found while a paralyzable channel is supposed
if a value of 1 is found. Of course for analog signals no dead time correction will
be applied and so the corresponding values have to be set to undefined value. This
information can be also taken from SCC DB. In our example the 1064 nm channel
is acquired in analog mode so the corresponding has to be undefined. If we want to
consider all the photoncounting signals as not-paralyzable ones: we have to set:

Dead_Time_Corr_Type = _, 0, 0, 0 ;

• Trigger_Delay(channels)

This optional array defines the delay (in ns) of the middle of the first rangebin with
respect to the output laser pulse for each lidar channel. The SCC will use the values
given by this array to correct for trigger delay. This information can be also taken
from SCC DB. Let’s suppose that in our example all the photoncounting channels
are not affected by this delay and only the analog channel at 1064nm is acquired
with a delay of 50ns. In this case we have to set:

Trigger_Delay = 50, 0, 0, 0 ;

9



• Background_Mode(channels)

This optional array defines how the atmospheric background has to be subtracted
from the lidar channel. Two options are available for the calculation of atmospheric
background:

1. Average in the far field of lidar channel. In this case the value of this variable
has to be 1

2. Average within pre-trigger bins. In this case the value of this variable has to
be 0

This information can be also taken from SCC DB. Let’s suppose in our example we
use the pre-trigger for the 1064nm channel and the far field for all other channels.
In this case we have to set:

Background_Mode = 0, 1, 1, 1 ;

• Background_Low(channels)

This mandatory array defines the minimum altitude (in meters) to consider in cal-
culating the atmospheric background for each channel. In case pre-trigger mode is
used the corresponding value has to be set to the rangebin to be used as lower limit
(within pre-trigger region) for background calculation. In our example, if we want
to calculate the background between 30000 and 50000 meters for all photoncount-
ing channels and we want to use the first 500 pre-trigger bins for the background
calculation for the 1064nm channel we have to set:

Background_Low= 0, 30000, 30000, 30000 ;

• Background_High(channels)

This mandatory array defines the maximum altitude (in meters) to consider in cal-
culating the atmospheric background for each channel. In case pre-trigger mode is
used the corresponding value has to be set to the rangebin to be used as upper limit
(within pre-trigger region) for background calculation. In our example, if we want
to calculate the background between 30000 and 50000 meters for all photoncount-
ing channels and we want to use the first 500 pre-trigger bins for the background
calculation for the 1064nm channel we have to set:

Background_High = 500, 50000, 50000, 50000 ;

• Molecular_Calc

This mandatory variable defines the way used by SCC to calculate the molecular
density profile. The following options are available:

1. Automatic.
In this case the value of this variable has to be 0. First the availablity of
model forecast/re-analysis on Cloudnet data portal (https://cloudnet.fmi.fi/)
is checked. In case no model data are found US Standard Atmosphere 1976 is
used

2. Radiosounding.
In this case the value of this variable has to be 1

10



3. Model forecast/re-analysis.
In this case the value of this variable has to be 2. Model data are made available
by Cloudnet data portal (https://cloudnet.fmi.fi/)

4. US Standard Atmosphere 1976.
In this case the value of this variable has to be 4

If we decide to use the options 1. or 4. we have to provide also the measured pressure
and temperature at lidar station level. Options 1. and 3. are available only for the
stations registered on Cloudnet data portal for the delivery of the required model
data. The Cloudnet station registration status can be checked by looking at the field
‘Cloudnet Station ID’ in the station settings. If this field is filled the corresponding
station is registered otherwise it is not. In case the station is not registered you can
ask to be registered by contacting SCC responsible. Usually model data are made
available with a delay of 24h.

For the option 2. a radiosounding file has to be submitted separately in NetCDF
format (the structure of this file is summarized in table 2). Let’s suppose we want
to use the option 1. so:

Molecular_Calc = 0 ;

• Pressure_at_Lidar_Station

Because we have chosen the automatic calculation mode to compute the molecular
density profile we need to provide the pressure in hPa at lidar station level (in case
model data are not available):

Pressure_at_Lidar_Station = 1010 ;

• Temperature_at_Lidar_Station

Because we have chosen the automatic calculation mode to compute the molecular
density profile we need to provide the temperature in C at lidar station level (in
case model data are not available):

Temperature_at_Lidar_Station = 19.8 ;

• LR_Input(channels)

This array is required only for lidar channels for which elastic backscatter retrieval
has to be performed. It defines the lidar ratio to be used within this retrieval. Two
options are available:

1. The user can submit a lidar ratio profile. In this case the value of this variable
has to be 0.

2. A fixed value of lidar ratio can be used. In this case the value of this variable
has to be 1.

If we decide to use the option 1. a lidar ratio file has to be submitted separately in
NetCDF format (the structure of this file is summarized in table 4). If we decide
to use the option 2. the fixed value of lidar ratio will be taken from SCC DB. In
our example we have to give a value of this array only for the 1064nm lidar channel
because for the 532nm we will be able to retrieve a Raman backscatter coefficient.
In case we want to use the fixed value stored in SCC DB we have to set:

11



LR_Input = 1,_,_,_ ;

• DAQ_Range(channels)

This array is required only if one or more lidar signals are acquired in analog mode.
It gives the analog scale in mV used to acquire the analog signals. In our example we
have only the 1064nm channel acquired in analog mode. If we have used a 100mV
analog scale to acquire this channel we have to set:

DAQ_Range = 100,_,_,_ ;

1.3 Global attributes

• Measurement_ID

This mandatory global attribute defines the measurement ID corresponding to the
actual lidar measurement. It is a string composed by 12 characters. The first 8
characters give the start date of measurement in the format YYYYMMDD. The
next 2 characters give the Earlinet call-sign of the station. The last 2 characters
are used to distinguish between different time-series within the same date. In our
example we have to set:

Measurement_ID= "20090130cc00" ;

• RawData_Start_Date

This mandatory global attribute defines the start date of lidar measurements in the
format YYYYMMDD. In our case we have:

RawData_Start_Date = "20090130" ;

• RawData_Start_Time_UT

This mandatory global attribute defines the UT start time of lidar measurements
in the format HHMMSS. In our case we have:

RawData_Start_Time_UT = "000001" ;

• RawData_Stop_Time_UT

This mandatory global attribute defines the UT stop time of lidar measurements in
the format HHMMSS. In our case we have:

RawData_Stop_Time_UT = "000501" ;

• RawBck_Start_Date

This optional global attribute defines the start date of dark measurements in the
format YYYYMMDD. In our case we have:

RawBck_Start_Date = "20090129" ;

• RawBck_Start_Time_UT

This optional global attribute defines the UT start time of dark measurements in
the format HHMMSS. In our case we have:

12



RawBck_Start_Time_UT = "235001" ;

• RawBck_Stop_Time_UT

This optional global attribute defines the UT stop time of dark measurements in
the format HHMMSS. In our case we have:

RawBck_Stop_Time_UT = "235301" ;

1.4 Example of file (CDL format)

To summarize we have the following NetCDF Raw Lidar Data file (in CDL format):

dimensions:

points = 5000 ;

channels = 4 ;

time = UNLIMITED ; // (10 currently)

nb_of_time_scales = 2 ;

scan_angles = 1 ;

time_bck = 6 ;

variables:

int channel_ID(channels) ;

int Laser_Repetition_Rate(channels) ;

double Laser_Pointing_Angle(scan_angles) ;

int Signal_Type(channels);

double Emitted_Wavelength(channels) ;

double Detected_Wavelength(channels) ;

double Raw_Data_Range_Resolution(channels) ;

int Background_Mode(channels) ;

double Background_Low(channels) ;

double Background_High(channels) ;

int Molecular_Calc ;

double Pressure_at_Lidar_Station ;

double Temperature_at_Lidar_Station ;

int id_timescale(channels) ;

double Dead_Time(channels) ;

int Dead_Time_Corr_Type(channels) ;

int Acquisition_Mode(channels) ;

double Trigger_Delay(channels) ;

int LR_Input(channels) ;

int Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales) ;

int Raw_Data_Start_Time(time, nb_of_time_scales) ;

int Raw_Data_Stop_Time(time, nb_of_time_scales) ;

int Raw_Bck_Start_Time(time_bck, nb_of_time_scales) ;

int Raw_Bck_Stop_Time(time_bck, nb_of_time_scales) ;

int Laser_Shots(time, channels) ;

double Raw_Lidar_Data(time, channels, points) ;

double Background_Profile(time_bck, channels, points) ;

double DAQ_Range(channels) ;

13



// global attributes:

:Measurement_ID = "20090130cc00" ;

:RawData_Start_Date = "20090130" ;

:RawData_Start_Time_UT = "000001" ;

:RawData_Stop_Time_UT = "000501" ;

:RawBck_Start_Date = "20090129" ;

:RawBck_Start_Time_UT = "235001" ;

:RawBck_Stop_Time_UT = "235301" ;

data:

channel_ID = 7, 5, 6, 8 ;

Laser_Repetition_Rate = 50, 50, 50, 50 ;

Laser_Pointing_Angle = 5 ;

Signal_Type = 0, 7, 6, 3 ;

Emitted_Wavelength = 1064, 532, 532, 532 ;

Detected_Wavelength = 1064, 532, 532, 607 ;

Raw_Data_Range_Resolution = 7.5, 15, 15, 15 ;

Background_Mode = 0, 1, 1, 1 ;

Background_Low = 0, 30000, 30000, 30000 ;

Background_High = 500, 50000, 50000, 50000 ;

Molecular_Calc = 0 ;

Pressure_at_Lidar_Station = 1010 ;

Temperature_at_Lidar_Station = 19.8 ;

id_timescale = 1, 0, 0, 0 ;

Dead_Time = _, 10, 10, 10 ;

Dead_Time_Corr_Type = _, 0, 0, 0 ;

Acquisition_Mode = 0, 1, 1, 1 ;

Trigger_Delay = 50, 0, 0, 0 ;

LR_Input = 1,_,_,_ ;

14



DAQ_Range = 100,_,_,_ ;

Laser_Pointing_Angle_of_Profiles =

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

_, 0,

_, 0,

_, 0,

_, 0,

_, 0 ;

Raw_Data_Start_Time =

0, 0,

60, 30,

120, 60,

180, 90,

240, 120,

_, 150,

_, 180,

_, 210,

_, 240,

_, 270 ;

Raw_Data_Stop_Time =

60, 30,

120, 60,

180, 90,

240, 120,

300, 150,

_, 180,

_, 210,

_, 240,

_, 270,

_, 300 ;

Raw_Bck_Start_Time =

0, 0,

60, 30,

120, 60,

_, 90,

_, 120,

_, 150;

15



Raw_Bck_Stop_Time =

60, 30,

120, 60,

180, 90,

_, 120,

_, 150,

_, 180 ;

Laser_Shots =

1500, 3000, 3000, 3000,

1500, 3000, 3000, 3000,

1500, 3000, 3000, 3000,

1500, 3000, 3000, 3000,

1500, 3000, 3000, 3000,

1500, _, _, _,

1500, _, _, _,

1500, _, _, _,

1500, _, _, _,

1500, _, _, _ ;

Raw_Lidar_Data = ...

Background_Profile = ...

The name of the input file should have the following format:

Measurement_ID.nc

so in the example the filename should be 20090130cc00.nc.

Please keep in mind that in case you submit a file like the previous one all the pa-
rameters present in it will be used by the SCC even if you have different values for the
same parameters within the SCC DB. If you want to use the values already stored in
SCC DB (this should be the usual way to use SCC) the Raw Lidar Data input file has to
be modified as follows:

dimensions:

points = 5000 ;

channels = 4 ;

time = UNLIMITED ; // (10 currently)

nb_of_time_scales = 2 ;

scan_angles = 1 ;

time_bck = 6 ;

variables:

int channel_ID(channels) ;

double Laser_Pointing_Angle(scan_angles) ;

double Background_Low(channels) ;

16



double Background_High(channels) ;

int Molecular_Calc ;

double Pressure_at_Lidar_Station ;

double Temperature_at_Lidar_Station ;

int id_timescale(channels) ;

int Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales) ;

int Raw_Data_Start_Time(time, nb_of_time_scales) ;

int Raw_Data_Stop_Time(time, nb_of_time_scales) ;

int Raw_Bck_Start_Time(time_bck, nb_of_time_scales) ;

int Raw_Bck_Stop_Time(time_bck, nb_of_time_scales) ;

int LR_Input(channels) ;

int Laser_Shots(time, channels) ;

double Raw_Lidar_Data(time, channels, points) ;

double Background_Profile(time_bck, channels, points) ;

double DAQ_Range(channels) ;

// global attributes:

:Measurement_ID = "20090130cc00" ;

:RawData_Start_Date = "20090130" ;

:RawData_Start_Time_UT = "000001" ;

:RawData_Stop_Time_UT = "000501" ;

:RawBck_Start_Date = "20090129" ;

:RawBck_Start_Time_UT = "235001" ;

:RawBck_Stop_Time_UT = "235301" ;

data:

channel_ID = 7, 5, 6, 8 ;

Laser_Pointing_Angle = 5 ;

Background_Low = 0, 30000, 30000, 30000 ;

Background_High = 500, 50000, 50000, 50000 ;

Molecular_Calc = 0 ;

Pressure_at_Lidar_Station = 1010 ;

Temperature_at_Lidar_Station = 19.8 ;

id_timescale = 1, 0, 0, 0 ;

LR_Input = 1,_,_,_ ;

DAQ_Range = 100,_,_,_ ;

Laser_Pointing_Angle_of_Profiles =

0, 0,

17



0, 0,

0, 0,

0, 0,

0, 0,

_, 0,

_, 0,

_, 0,

_, 0,

_, 0 ;

Raw_Data_Start_Time =

0, 0,

60, 30,

120, 60,

180, 90,

240, 120,

_, 150,

_, 180,

_, 210,

_, 240,

_, 270 ;

Raw_Data_Stop_Time =

60, 30,

120, 60,

180, 90,

240, 120,

300, 150,

_, 180,

_, 210,

_, 240,

_, 270,

_, 300 ;

Raw_Bck_Start_Time =

0, 0,

60, 30,

120, 60,

_, 90,

_, 120,

_, 150;

Raw_Bck_Stop_Time =

60, 30,

120, 60,

180, 90,

18



_, 120,

_, 150,

_, 180 ;

Laser_Shots =

1500, 3000, 3000, 3000,

1500, 3000, 3000, 3000,

1500, 3000, 3000, 3000,

1500, 3000, 3000, 3000,

1500, 3000, 3000, 3000,

1500, _, _, _,

1500, _, _, _,

1500, _, _, _,

1500, _, _, _,

1500, _, _, _ ;

Raw_Lidar_Data = ...

Background_Profile = ...

This example file contains the minimum collection of mandatory information that has to
be found within the Raw Lidar Data input file. If it is really necessary, the user can decide
to add to these mandatory parameters any number of additional parameters considered
in the previous example.

Finally, suppose we want to make the following changes with respect to the previous
example:

1. use a sounding file for molecular density calculation

2. supply a lidar ratio profile to use in elastic backscatter retrieval instead of a fixed
value

3. provide a overlap function for overlap correction

In this case we have to generate the following NetCDF additional files:

• rs_20090130cc00.nc

The name of Sounding Data file has to be computed as follows:
"rs_"+Measurement_ID

The structure of this file is summarized in table 2.

• ov_20090130cc00.nc

The name of Overlap file has to be computed as follows:
"ov_"+Measurement_ID

The structure of this file is summarized in table 3.

• lr_20090130cc00.nc

The name of Lidar Ratio file has to be computed as follows:
"lr_"+Measurement_ID

The structure of this file is summarized in table 4.

19



Moreover we need to apply the following changes to the Raw Lidar Data input file:

1. Change the value of the variable Molecular_Calc as follows:

Molecular_Calc = 1 ;

Of course the variables Pressure_at_Lidar_Station and Temperature_at_Lidar_Station

are not necessary anymore.

2. Change the values of the array LR_Input as follows:

LR_Input = 0,_,_,_ ;

3. Add the global attribute Sounding_File_Name

Sounding_File_Name = "rs_20090130cc00.nc" ;

4. Add the global attribute LR_File_Name

LR_File_Name = "lr_20090130cc00.nc" ;

5. Add the global attribute Overlap_File_Name

Overlap_File_Name = "ov_20090130cc00.nc" ;

20



Table 1: NetCDF Raw Lidar Data file structure

Description Type
Dimensions
points

Number of vertical bins of lidar profiles. In case different
channels correspond to different numbers of vertical bins
this dimension has to be set to the maximum number of
vertical bins

- Mandatory

channels
Number of lidar channels - Mandatory

nb of time scales
Number of different time scales included in lidar data. If
all channels are acquired with the same time scale this
dimension has to be set to 1.

- Mandatory

time
Number of profiles included in the time-series UNLIMITED Mandatory

time bck
Number of dark measurement profiles - Optional

scan angles
Number of scan angles used during the measurement - Mandatory

Variables
channel ID(channels)

Channel ID in SCC relational database. int Mandatory
channel string ID(channels)

Channel string ID in SCC relational database. string Optional
Laser Repetition Rate(channels)

Laser repetition rate in Hz for each channel int Optional
Laser Pointing Angle(scan angles)

Laser pointing angle(s) with respect to the zenith ex-
pressed in degrees

double Mandatory

Scattering Mechanism(channels)
Defines the scattering mechanism involved in each lidar
channel. 0-Elastic, 1-Raman N2, 2-Cross Polarization,
3-Parallel Polarization, 4-Raman H2O, 5-RRl, 6-RRh

int Optional

Signal Type(channels)
Defines the signal type involved in each lidar channel. All
the possible values are given in the text

int Optional

Emitted Wavelength(channels)
Emitted wavelengths in nm for each channel double Optional

Detected Wavelength(channels)
Detected wavelengths in nm. These are the center of your
interferential filter for each channel.

double Optional

Raw Data Range Resolution(channels)
Raw data range resolution of lidar profile in m for each
channel

double Optional

continued on next page

21



continued from previous page

Description Type
Background Mode(channels)

Defines the way to use for atmospherical background sub-
traction for each channel. 0-Pre-trigger, 1-Far field

int Optional

Background Low(channels)
Minimum altitudes for atmospherical background calcu-
lation in meters for each channel. If pre-trigger is used
as background subtraction mode for a particular channel,
the corresponding value of this variable has to be set to
the rangebin to be used as lower limit (within pre-trigger
region) for background calculation.

double Mandatory

Background High(channels)
Maximum altitude for atmospherical background calcu-
lation in meters for each channel. If pre-trigger is used
as background subtraction mode for a particular chan-
nel, the corresponding value of this variable has to be
set to the rangebin to be used as upper limit (within pre-
trigger region) for background calculation. If the variable
First Signal Rangebin is not given the first valid lidar
rangebin will be the next after Background High one.

double Mandatory

Molecular Calc
Defines the way to calculate molecular numerical density.
0-Automatic (first model forecast/re-analysis, then US
Standard Atmosphere 1976), 1-External radiosounding,
2-Model forecast/re-analysis, 4-US Standard Atmosphere
1976.

int Mandatory

id timescale(channels)
This array determines which time scale is used for the ac-
quisition of each channel. In particular this array defines
the link between the channel index and the time scale in-
dex. In case a single time scale is used, all values of this
array have to be set to 0.

int Mandatory

Dead Time Corr Type(channels)
This array defines the type of dead time correction that
has to be applied of photoncounting lidar data. Please
use a value of 0 for a not-paralyzable channel and 1 for a
paralyzable one.

int Optional

Dead Time(channels)
Value of dead time in ns for each channel double Optional

Acquisition Mode(channels)
Defines the acquisition mode used for each channel. 0-
Analog, 1-Photoncounting

int Optional

Trigger Delay(channels)
The delay in ns between the laser pulse output and the
middle of the first rangebin for each channel.

double Optional

continued on next page

22



continued from previous page

Description Type
Laser Pointing Angle of Profiles(time,nb of time scales)

The array determines which scan angle is used for the
acquisition of each lidar profile. In particular this array
defines the link between the time and timescale indexes
and the scan angle index.

int Mandatory

Raw Data Start Time(time, nb of time scales)
Start time of each raw lidar profile expressed in seconds
from the RawData Start Time UT

int Mandatory

Raw Data Stop Time(time, nb of time scales)
Stop time of each raw lidar profile expressed in seconds
from the RawData Start Time UT

int Mandatory

Laser Shots(time, channels)
Number of laser shots accumulated for each channel at
any time

int Mandatory

Raw Lidar Data(time, channels, points)
Raw lidar data. For photoncounting channels the counts
have to be used and for analog channels the signal in mV.

double Mandatory

Pol Calib Range Min(channels)
Mimimum of altitude range to use for the linear polar-
ization calibration

double Mandatory for depo-
larization calibration
product

Pol Calib Range Max(channels)
Maximum of altitude range to use for the linear polariza-
tion calibration

double Mandatory for linear
polarization calibra-
tion product

LR Input(channels)
Lidar ratio to be used within the elastic-only backscatter
retrieval. Two options are available: 0 for lidar ratio
profile (taken from an external file submitted by the user),
1 for fixed value (taken from SCC DB)

int Mandatory if elastic
backscatter retrievals
have to be done

DAQ Range(channels)
Analog scale used to acquire analog signals in mV double Mandatory if analog

signals are present
Pressure at Lidar Station

Pressure measured at lidar station level in hPa. double Mandatory if Molecu-
lar Calc=4

Temperature at Lidar Station
Temperature measured at lidar station level in C. double Mandatory if Molecu-

lar Calc=4
Background Profile(time bck,channels,points)

Dark measurements profiles. These profiles will be sub-
tracted from the lidar profiles.

double Optional

Raw Bck Start Time(time bck, nb of time scales)
continued on next page

23



continued from previous page

Description Type
Start time of each dark measurement profile expressed in
seconds from the RawBck Start Time UT

int Mandatory if Back-
ground Profile is given

Raw Bck Stop Time(time bck, nb of time scales)
Stop time of each dark measurement profile expressed in
seconds from the RawBck Start Time UT

int Mandatory if Back-
ground Profile is given

Error On Raw Lidar Data(time, channels, points)
This array has to be used only by lidar systems able to
provide the errors on each single raw analog lidar pro-
file. This array has to be filled only in correspondence of
analog channels leaving all other values as undefined (for
the photoncounting channels the SCC will calculate the
errors as the square root of the counts.

double Optional

First Signal Rangebin(channels)
Rangebin at which lidar profile begins starting from 0.
If it is not given the first valid rangebin will be the one
after the Background High in case pre-trigger is used as
background subtraction mode, 0 if far field is used.

int Optional

cloud mask channel idx
Index of the channel the provided cloud mask refers to
(in terms of channel position in the file starting with 0,
i.e. channel dimension index)

int Optional

cloud mask(time, points)
Manual cloud mask defined as bitmask (3
bits): bit0→unknown cloud; bit1→cirrus cloud;
bit2→water cloud. Cloud-free region should have
all the bits unset. Valid range: 0-7. Undefined values is
NC FILL BYTE (-127).

byte Mandatory if
cloud mask channel idx
has been defined

Global Attributes
Measurement ID

Measurement identifier defining your measurement. The
value of this global attribute has to match with the Mea-
surement ID given in SCC database for the same mea-
surements.

text Mandatory

RawData Start Date
The start date of measurement in format YYYYMMDD.
The value of this attribute has to match with the start
date given in SCC database

text Mandatory

RawData Start Time UT
Start Time of measurement (UT) in format HHMMSS text Mandatory

RawData Stop Time UT
Stop Time of measurement (UT) in format HHMMSS text Mandatory

RawBck Start Date
The start date of the dark measurement in format
YYYYMMDD

text Mandatory if Back-
ground Profile is given
continued on next page

24



continued from previous page

Description Type
RawBck Start Time UT

Start Time of dark measurement (UT) in format HH-
MMSS

text Mandatory if Back-
ground Profile is given

RawBck Stop Time UT
Stop Time of measurement (UT) in format HHMMSS text Mandatory if Back-

ground Profile is given
Sounding File Name

Name of NetCDF sounding file to use in molecular density
calculation.

text Mandatory if Molecu-
lar Calc=1

LR File Name
Name of NetCDF file containing the lidar ratio profile to
use within elastic backscatter retrievals.

text Mandatory if at least
one value of LR Input
is zero

Overlap File Name
Name of NetCDF overlap file text Optional

Location
Location where the lidar system is running text Optional

System
Lidar system name text Optional

Latitude degrees north
Latitude where the lidar system is running double Optional

Longitude degrees east
Longitude where the lidar system is running double Optional

Altitude meter asl
Altitude above see level double Optional

Cloudnet Station ID
String to use to get NWP from Cloudnet API. If not
provided the value stored for the corresponding station
in the SCC database is used.

text Optional

25



Table 2: NetCDF Sounding Data file structure

Description Type
Dimensions
points

Number of vertical bins of sounding profiles. - Mandatory
Variables
Altitude(points)

Altitude above sounding station in m. The vertical reso-
lution can be different from the resolution of lidar profile.
In this case the molecular density will be interpolated at
same resolution of lidar profile.

double Mandatory

Temperature(points)
Sounding temperature profile in ◦C double Mandatory

Pressure(points)
Sounding pressure profile in hPa double Mandatory

RelativeHumidity(points)
Sounding relative humidity profile (%) double Optional

Global Attributes
Latitude degrees north

Latitude of sounding station double Mandatory
Longitude degrees east

Longitude of sounding station double Mandatory
Altitude meter asl

Altitude above sea level of sounding station double Mandatory
Location

Location name of sounding station text Optional
Sounding Station Name

Sounding station name text Optional
WMO Station Number

WMO station number text Optional
WBAN Station Number

WBAN station number text Optional
Sounding Start Date

Sounding start date in format YYYYMMDD text Mandatory
Sounding Start Time UT

Sounding start (synoptic) time UT in format HHMMSS text Mandatory
Sounding Stop Time UT

Sounding stop time UT in format HHMMSS text Optional

26



Table 3: NetCDF Overlap file structure

Description Type
Dimensions
points

Number of vertical bins of overlap function. In case differ-
ent channels have different numbers of bins this dimen-
sion has to be set to the maximum number of vertical
bins.

- Mandatory

channels
Number of lidar channels for which the overlap function
has been measured

- Mandatory

Variables
Altitude(points)

Hight above lidar station profile in m. The vertical reso-
lution can be different from the resolution of lidar profile.
In this case the overlap profile will be interpolated at
same resolution of lidar profile

double Mandatory

Overlap Function(channels,points)
Correction factor for overlap. double Mandatory

channel ID(channels)
Channel ID in SCC relational database for which overlap
function has been measured. In the final version of SCC
it will be provided to the user a tool to get the channel
IDs for his lidar system via Web. At the moment these
IDs will be comunicated directly to the user.

int Mandatory

Global Attributes
Lidar Station Name

Earlinet call-sign for Lidar Station text Mandatory
Overlap Measurement Date

The date in which the overlap function has been measured
in format YYYYMMDD

text Mandatory

27



Table 4: NetCDF Lidar Ratio file structure

Description Type
Dimensions
points

Number of vertical bins of lidar ratio profiles. In case
different channels have different number of bins this di-
mension has to be set to the maximum number of vertical
bins

- Mandatory

products
Number of lidar products for which the lidar ratio profile
is given

- Mandatory

Variables
Altitude(points)

Hight above lidar station profile in m. The vertical reso-
lution can be different from the resolution of lidar profile.
In this case the lidar ratio profile will be interpolated at
same resolution of lidar profile

double Mandatory

Lidar Ratio(products,points)
Lidar ratio profile double Mandatory

Lidar Ratio Error(products,points)
Lidar ratio error profile double Optional

product ID(products)
Product ID in SCC relational database for which the lidar
profile has been given. In the final version of SCC it will
be provided to the user a tool to get the product IDs for
his lidar system via Web. At the moment these IDs will
be comunicated directly to the user.

int Mandatory

Global Attributes
Lidar Station Name

Earlinet call-sign for Lidar Station text Mandatory

28


